dicee.models.literal
Classes
A model for learning and predicting numerical literals using pre-trained KGE. |
Module Contents
- class dicee.models.literal.LiteralEmbeddings(num_of_data_properties: int, embedding_dims: int, entity_embeddings: torch.tensor, dropout: float = 0.3, gate_residual=True, freeze_entity_embeddings=True)[source]
Bases:
torch.nn.Module
A model for learning and predicting numerical literals using pre-trained KGE.
- num_of_data_properties
Number of data properties (attributes).
- Type:
int
- embedding_dims
Dimension of the embeddings.
- Type:
int
- entity_embeddings
Pre-trained entity embeddings.
- Type:
torch.tensor
- dropout
Dropout rate for regularization.
- Type:
float
- gate_residual
Whether to use gated residual connections.
- Type:
bool
- freeze_entity_embeddings
Whether to freeze the entity embeddings during training.
- Type:
bool
- embedding_dim
- num_of_data_properties
- gate_residual = True
- freeze_entity_embeddings = True
- entity_embeddings
- data_property_embeddings
- fc
- fc_out
- dropout
- gated_residual_proj
- layer_norm
- forward(entity_idx, attr_idx)[source]
- Parameters:
entity_idx (Tensor) – Entity indices (batch).
attr_idx (Tensor) – Attribute (Data property) indices (batch).
- Returns:
scalar predictions.
- Return type:
Tensor
- property device