dicee.knowledge_graph

Classes

KG

Knowledge Graph

Module Contents

class dicee.knowledge_graph.KG(dataset_dir: str = None, byte_pair_encoding: bool = False, padding: bool = False, add_noise_rate: float = None, sparql_endpoint: str = None, path_single_kg: str = None, path_for_deserialization: str = None, add_reciprocal: bool = None, eval_model: str = None, read_only_few: int = None, sample_triples_ratio: float = None, path_for_serialization: str = None, entity_to_idx=None, relation_to_idx=None, backend=None, training_technique: str = None, separator: str = None)[source]

Knowledge Graph

dataset_dir = None
sparql_endpoint = None
path_single_kg = None
byte_pair_encoding = False
ordered_shaped_bpe_tokens = None
add_noise_rate = None
num_entities = None
num_relations = None
path_for_deserialization = None
add_reciprocal = None
eval_model = None
read_only_few = None
sample_triples_ratio = None
path_for_serialization = None
entity_to_idx = None
relation_to_idx = None
backend = 'pandas'
training_technique = None
idx_entity_to_bpe_shaped
enc
num_tokens
num_bpe_entities = None
padding = False
dummy_id
max_length_subword_tokens = None
train_set_target = None
target_dim = None
train_target_indices = None
ordered_bpe_entities = None
separator = None
description_of_input = None
describe() None[source]
property entities_str: List
property relations_str: List
exists(h: str, r: str, t: str)[source]
__iter__()[source]
__len__()[source]
func_triple_to_bpe_representation(triple: List[str])[source]