dicee.evaluator
Classes
Evaluator class to evaluate KGE models in various downstream tasks |
Module Contents
- class dicee.evaluator.Evaluator(args, is_continual_training=None)
Evaluator class to evaluate KGE models in various downstream tasks
Arguments
- re_vocab = None
- er_vocab = None
- ee_vocab = None
- func_triple_to_bpe_representation = None
- is_continual_training = None
- num_entities = None
- num_relations = None
- args
- report
- during_training = False
- vocab_preparation(dataset) None
A function to wait future objects for the attributes of executor
- Return type:
None
- eval(dataset: dicee.knowledge_graph.KG, trained_model, form_of_labelling, during_training=False) None
- eval_rank_of_head_and_tail_entity(*, train_set, valid_set=None, test_set=None, trained_model)
- eval_rank_of_head_and_tail_byte_pair_encoded_entity(*, train_set=None, valid_set=None, test_set=None, ordered_bpe_entities, trained_model)
- eval_with_byte(*, raw_train_set, raw_valid_set=None, raw_test_set=None, trained_model, form_of_labelling) None
Evaluate model after reciprocal triples are added
- eval_with_bpe_vs_all(*, raw_train_set, raw_valid_set=None, raw_test_set=None, trained_model, form_of_labelling) None
Evaluate model after reciprocal triples are added
- eval_with_vs_all(*, train_set, valid_set=None, test_set=None, trained_model, form_of_labelling) None
Evaluate model after reciprocal triples are added
- evaluate_lp_k_vs_all(model, triple_idx, info=None, form_of_labelling=None)
Filtered link prediction evaluation. :param model: :param triple_idx: test triples :param info: :param form_of_labelling: :return:
- evaluate_lp_with_byte(model, triples: List[List[str]], info=None)
- evaluate_lp_bpe_k_vs_all(model, triples: List[List[str]], info=None, form_of_labelling=None)
- Parameters:
model
triples (List of lists)
info
form_of_labelling
- evaluate_lp(model, triple_idx, info: str)
- dummy_eval(trained_model, form_of_labelling: str)
- eval_with_data(dataset, trained_model, triple_idx: numpy.ndarray, form_of_labelling: str)