dicee.models.base_model

Classes

BaseKGELightning

Base class for all neural network modules.

BaseKGE

Base class for all neural network modules.

IdentityClass

Base class for all neural network modules.

Module Contents

class dicee.models.base_model.BaseKGELightning(*args, **kwargs)[source]

Bases: lightning.LightningModule

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to(), etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables:

training (bool) – Boolean represents whether this module is in training or evaluation mode.

training_step_outputs = []
mem_of_model() Dict[source]

Size of model in MB and number of params

training_step(batch, batch_idx=None)[source]

Here you compute and return the training loss and some additional metrics for e.g. the progress bar or logger.

Parameters:
  • batch – The output of your data iterable, normally a DataLoader.

  • batch_idx – The index of this batch.

  • dataloader_idx – The index of the dataloader that produced this batch. (only if multiple dataloaders used)

Returns:

  • Tensor - The loss tensor

  • dict - A dictionary which can include any keys, but must include the key 'loss' in the case of automatic optimization.

  • None - In automatic optimization, this will skip to the next batch (but is not supported for multi-GPU, TPU, or DeepSpeed). For manual optimization, this has no special meaning, as returning the loss is not required.

In this step you’d normally do the forward pass and calculate the loss for a batch. You can also do fancier things like multiple forward passes or something model specific.

Example:

def training_step(self, batch, batch_idx):
    x, y, z = batch
    out = self.encoder(x)
    loss = self.loss(out, x)
    return loss

To use multiple optimizers, you can switch to ‘manual optimization’ and control their stepping:

def __init__(self):
    super().__init__()
    self.automatic_optimization = False


# Multiple optimizers (e.g.: GANs)
def training_step(self, batch, batch_idx):
    opt1, opt2 = self.optimizers()

    # do training_step with encoder
    ...
    opt1.step()
    # do training_step with decoder
    ...
    opt2.step()

Note

When accumulate_grad_batches > 1, the loss returned here will be automatically normalized by accumulate_grad_batches internally.

loss_function(yhat_batch: torch.FloatTensor, y_batch: torch.FloatTensor)[source]
Parameters:
  • yhat_batch

  • y_batch

on_train_epoch_end(*args, **kwargs)[source]

Called in the training loop at the very end of the epoch.

To access all batch outputs at the end of the epoch, you can cache step outputs as an attribute of the LightningModule and access them in this hook:

class MyLightningModule(L.LightningModule):
    def __init__(self):
        super().__init__()
        self.training_step_outputs = []

    def training_step(self):
        loss = ...
        self.training_step_outputs.append(loss)
        return loss

    def on_train_epoch_end(self):
        # do something with all training_step outputs, for example:
        epoch_mean = torch.stack(self.training_step_outputs).mean()
        self.log("training_epoch_mean", epoch_mean)
        # free up the memory
        self.training_step_outputs.clear()
test_epoch_end(outputs: List[Any])[source]
test_dataloader() None[source]

An iterable or collection of iterables specifying test samples.

For more information about multiple dataloaders, see this section.

For data processing use the following pattern:

  • download in prepare_data()

  • process and split in setup()

However, the above are only necessary for distributed processing.

Warning

do not assign state in prepare_data

  • test()

  • prepare_data()

  • setup()

Note

Lightning tries to add the correct sampler for distributed and arbitrary hardware. There is no need to set it yourself.

Note

If you don’t need a test dataset and a test_step(), you don’t need to implement this method.

val_dataloader() None[source]

An iterable or collection of iterables specifying validation samples.

For more information about multiple dataloaders, see this section.

The dataloader you return will not be reloaded unless you set :paramref:`~lightning.pytorch.trainer.trainer.Trainer.reload_dataloaders_every_n_epochs` to a positive integer.

It’s recommended that all data downloads and preparation happen in prepare_data().

  • fit()

  • validate()

  • prepare_data()

  • setup()

Note

Lightning tries to add the correct sampler for distributed and arbitrary hardware There is no need to set it yourself.

Note

If you don’t need a validation dataset and a validation_step(), you don’t need to implement this method.

predict_dataloader() None[source]

An iterable or collection of iterables specifying prediction samples.

For more information about multiple dataloaders, see this section.

It’s recommended that all data downloads and preparation happen in prepare_data().

  • predict()

  • prepare_data()

  • setup()

Note

Lightning tries to add the correct sampler for distributed and arbitrary hardware There is no need to set it yourself.

Returns:

A torch.utils.data.DataLoader or a sequence of them specifying prediction samples.

train_dataloader() None[source]

An iterable or collection of iterables specifying training samples.

For more information about multiple dataloaders, see this section.

The dataloader you return will not be reloaded unless you set :paramref:`~lightning.pytorch.trainer.trainer.Trainer.reload_dataloaders_every_n_epochs` to a positive integer.

For data processing use the following pattern:

  • download in prepare_data()

  • process and split in setup()

However, the above are only necessary for distributed processing.

Warning

do not assign state in prepare_data

  • fit()

  • prepare_data()

  • setup()

Note

Lightning tries to add the correct sampler for distributed and arbitrary hardware. There is no need to set it yourself.

configure_optimizers(parameters=None)[source]

Choose what optimizers and learning-rate schedulers to use in your optimization. Normally you’d need one. But in the case of GANs or similar you might have multiple. Optimization with multiple optimizers only works in the manual optimization mode.

Returns:

Any of these 6 options.

  • Single optimizer.

  • List or Tuple of optimizers.

  • Two lists - The first list has multiple optimizers, and the second has multiple LR schedulers (or multiple lr_scheduler_config).

  • Dictionary, with an "optimizer" key, and (optionally) a "lr_scheduler" key whose value is a single LR scheduler or lr_scheduler_config.

  • None - Fit will run without any optimizer.

The lr_scheduler_config is a dictionary which contains the scheduler and its associated configuration. The default configuration is shown below.

lr_scheduler_config = {
    # REQUIRED: The scheduler instance
    "scheduler": lr_scheduler,
    # The unit of the scheduler's step size, could also be 'step'.
    # 'epoch' updates the scheduler on epoch end whereas 'step'
    # updates it after a optimizer update.
    "interval": "epoch",
    # How many epochs/steps should pass between calls to
    # `scheduler.step()`. 1 corresponds to updating the learning
    # rate after every epoch/step.
    "frequency": 1,
    # Metric to to monitor for schedulers like `ReduceLROnPlateau`
    "monitor": "val_loss",
    # If set to `True`, will enforce that the value specified 'monitor'
    # is available when the scheduler is updated, thus stopping
    # training if not found. If set to `False`, it will only produce a warning
    "strict": True,
    # If using the `LearningRateMonitor` callback to monitor the
    # learning rate progress, this keyword can be used to specify
    # a custom logged name
    "name": None,
}

When there are schedulers in which the .step() method is conditioned on a value, such as the torch.optim.lr_scheduler.ReduceLROnPlateau scheduler, Lightning requires that the lr_scheduler_config contains the keyword "monitor" set to the metric name that the scheduler should be conditioned on.

Metrics can be made available to monitor by simply logging it using self.log('metric_to_track', metric_val) in your LightningModule.

Note

Some things to know:

  • Lightning calls .backward() and .step() automatically in case of automatic optimization.

  • If a learning rate scheduler is specified in configure_optimizers() with key "interval" (default “epoch”) in the scheduler configuration, Lightning will call the scheduler’s .step() method automatically in case of automatic optimization.

  • If you use 16-bit precision (precision=16), Lightning will automatically handle the optimizer.

  • If you use torch.optim.LBFGS, Lightning handles the closure function automatically for you.

  • If you use multiple optimizers, you will have to switch to ‘manual optimization’ mode and step them yourself.

  • If you need to control how often the optimizer steps, override the optimizer_step() hook.

class dicee.models.base_model.BaseKGE(args: dict)[source]

Bases: BaseKGELightning

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to(), etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables:

training (bool) – Boolean represents whether this module is in training or evaluation mode.

args
embedding_dim = None
num_entities = None
num_relations = None
num_tokens = None
learning_rate = None
apply_unit_norm = None
input_dropout_rate = None
hidden_dropout_rate = None
optimizer_name = None
feature_map_dropout_rate = None
kernel_size = None
num_of_output_channels = None
weight_decay = None
loss
selected_optimizer = None
normalizer_class = None
normalize_head_entity_embeddings
normalize_relation_embeddings
normalize_tail_entity_embeddings
hidden_normalizer
param_init
input_dp_ent_real
input_dp_rel_real
hidden_dropout
loss_history = []
byte_pair_encoding
max_length_subword_tokens
block_size
forward_byte_pair_encoded_k_vs_all(x: torch.LongTensor)[source]
Parameters:

x (B x 2 x T)

forward_byte_pair_encoded_triple(x: Tuple[torch.LongTensor, torch.LongTensor])[source]

byte pair encoded neural link predictors

Parameters:

-------

init_params_with_sanity_checking()[source]
forward(x: torch.LongTensor | Tuple[torch.LongTensor, torch.LongTensor], y_idx: torch.LongTensor = None)[source]
Parameters:
  • x

  • y_idx

  • ordered_bpe_entities

forward_triples(x: torch.LongTensor) torch.Tensor[source]
Parameters:

x

forward_k_vs_all(*args, **kwargs)[source]
forward_k_vs_sample(*args, **kwargs)[source]
get_triple_representation(idx_hrt)[source]
get_head_relation_representation(indexed_triple)[source]
get_sentence_representation(x: torch.LongTensor)[source]
Parameters:
  • (b (x shape)

  • 3

  • t)

get_bpe_head_and_relation_representation(x: torch.LongTensor) Tuple[torch.FloatTensor, torch.FloatTensor][source]
Parameters:

x (B x 2 x T)

get_embeddings() Tuple[numpy.ndarray, numpy.ndarray][source]
class dicee.models.base_model.IdentityClass(args=None)[source]

Bases: torch.nn.Module

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes:

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to(), etc.

Note

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

Variables:

training (bool) – Boolean represents whether this module is in training or evaluation mode.

args
__call__(x)[source]
static forward(x)[source]