dicee.trainer.torch_trainer
Classes
TorchTrainer for using single GPU or multi CPUs on a single node |
Module Contents
- class dicee.trainer.torch_trainer.TorchTrainer(args, callbacks)
Bases:
dicee.abstracts.AbstractTrainerTorchTrainer for using single GPU or multi CPUs on a single node
Arguments
callbacks: list of Abstract callback instances
- loss_function = None
- optimizer = None
- model = None
- train_dataloaders = None
- training_step = None
- process
- fit(*args, train_dataloaders, **kwargs) None
Training starts
Arguments
- kwargs:Tuple
empty dictionary
- Return type:
batch loss (float)
- forward_backward_update(x_batch: torch.Tensor, y_batch: torch.Tensor) torch.Tensor
Compute forward, loss, backward, and parameter update
Arguments
- Return type:
batch loss (float)
- extract_input_outputs_set_device(batch: list) Tuple
Construct inputs and outputs from a batch of inputs with outputs From a batch of inputs and put
Arguments
- Return type:
(tuple) mini-batch on select device