dicee.trainer.torch_trainer =========================== .. py:module:: dicee.trainer.torch_trainer Classes ------- .. autoapisummary:: dicee.trainer.torch_trainer.TorchTrainer Module Contents --------------- .. py:class:: TorchTrainer(args, callbacks) Bases: :py:obj:`dicee.abstracts.AbstractTrainer` TorchTrainer for using single GPU or multi CPUs on a single node Arguments ---------- args: ? callbacks: list of Abstract callback instances .. py:attribute:: loss_function :value: None .. py:attribute:: optimizer :value: None .. py:attribute:: model :value: None .. py:attribute:: train_dataloaders :value: None .. py:attribute:: training_step :value: None .. py:attribute:: process .. py:method:: fit(*args, train_dataloaders, **kwargs) -> None Training starts Arguments ---------- args:tuple (BASEKGE,) kwargs:Tuple empty dictionary :rtype: batch loss (float) .. py:method:: forward_backward_update(x_batch: torch.Tensor, y_batch: torch.Tensor) -> torch.Tensor Compute forward, loss, backward, and parameter update Arguments ---------- x_batch:(torch.Tensor) mini-batch inputs y_batch:(torch.Tensor) mini-batch outputs :rtype: batch loss (float) .. py:method:: extract_input_outputs_set_device(batch: list) -> Tuple Construct inputs and outputs from a batch of inputs with outputs From a batch of inputs and put Arguments ---------- batch: (list) mini-batch inputs on CPU :rtype: (tuple) mini-batch on select device