ontolearn.learners.spell_kit.fitting
Attributes
Classes
Functions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Module Contents
- ontolearn.learners.spell_kit.fitting.mode
- ontolearn.learners.spell_kit.fitting.HC
- ontolearn.learners.spell_kit.fitting.Simul
- ontolearn.learners.spell_kit.fitting.Pi
- ontolearn.learners.spell_kit.fitting.Pr
- ontolearn.learners.spell_kit.fitting.var_counter: int = 1
- ontolearn.learners.spell_kit.fitting.constraint_conceptname(size: int, A: Structure, hc: HC, ind_tp_idx, anti_types, type_var: list[dict[int, int]], simul: Simul)[source]
- ontolearn.learners.spell_kit.fitting.constraint_succ(size: int, A: Structure, sigma: Signature, pi: Pi, pr: Pr, simul: Simul, DR: list[list[list[int]]])[source]
- ontolearn.learners.spell_kit.fitting.simulation_constraints(size: int, sigma: Signature, A: Structure, mapping: Variables)[source]
- ontolearn.learners.spell_kit.fitting.real_coverage(model, P: list[int], N: list[int], mapping: Variables) int[source]
- ontolearn.learners.spell_kit.fitting.is_model(size: int, sigma: Signature, model: set[int], mapping: Variables, solver: pysat.solvers.Glucose4)[source]
- ontolearn.learners.spell_kit.fitting.minimize_concept_assertions(size: int, sigma: Signature, solver: pysat.solvers.Glucose4, mapping: Variables, model: set[int]) set[int][source]
- ontolearn.learners.spell_kit.fitting.model2fitting_query(size: int, sigma: Signature, mapping: Variables, model: set[int]) Structure[source]
- ontolearn.learners.spell_kit.fitting.create_variables(size: int, sigma: Signature, A: Structure) Variables[source]
- ontolearn.learners.spell_kit.fitting.tree_query_constraints(size: int, sigma: Signature, v: Variables)[source]
- ontolearn.learners.spell_kit.fitting.create_coverage_formula(P: list[int], N: list[int], coverage: int, mapping: Variables, all_pos: bool) list[list[int]][source]
- ontolearn.learners.spell_kit.fitting.determine_relevant_symbols(A: Structure, P: list[int], minP: int, dist: int) Signature[source]
- ontolearn.learners.spell_kit.fitting.restrict_nb(k: int, A: Structure, P: list[int], N: list[int]) tuple[Structure, list[int], list[int]][source]