ontolearn.ea_initialization
Initialization for evolutionary algorithms.
Attributes
Classes
Create a collection of name/value pairs. |
|
Abstract base class for initialization methods for evolutionary algorithms. |
|
Rnndom initialization methods for evolutionary algorithms. |
|
Random walk initialization for description logic learning. |
Module Contents
- class ontolearn.ea_initialization.RandomInitMethod(*args, **kwds)[source]
Bases:
enum.EnumCreate a collection of name/value pairs.
Example enumeration:
>>> class Color(Enum): ... RED = 1 ... BLUE = 2 ... GREEN = 3
Access them by:
attribute access:
>>> Color.RED <Color.RED: 1>
value lookup:
>>> Color(1) <Color.RED: 1>
name lookup:
>>> Color['RED'] <Color.RED: 1>
Enumerations can be iterated over, and know how many members they have:
>>> len(Color) 3
>>> list(Color) [<Color.RED: 1>, <Color.BLUE: 2>, <Color.GREEN: 3>]
Methods can be added to enumerations, and members can have their own attributes – see the documentation for details.
- GROW: Final
- FULL: Final
- RAMPED_HALF_HALF: Final
- class ontolearn.ea_initialization.AbstractEAInitialization[source]
Abstract base class for initialization methods for evolutionary algorithms.
- __slots__ = ()
- class ontolearn.ea_initialization.EARandomInitialization(min_height: int = 3, max_height: int = 6, method: RandomInitMethod = RandomInitMethod.RAMPED_HALF_HALF)[source]
Bases:
AbstractEAInitializationRnndom initialization methods for evolutionary algorithms.
- __slots__ = ('min_height', 'max_height', 'method')
- min_height: int
- max_height: int
- method: RandomInitMethod
- ontolearn.ea_initialization.Property
- ontolearn.ea_initialization.Object
- class ontolearn.ea_initialization.EARandomWalkInitialization(max_t: int = 2, jump_pr: float = 0.5)[source]
Bases:
AbstractEAInitializationRandom walk initialization for description logic learning.
- __slots__ = ('max_t', 'jump_pr', 'type_counts', 'dp_to_prim_type', 'dp_splits', 'kb')
- connection_pr: float = 0.5
- max_t: int
- jump_pr: float
- type_counts: Dict[owlapy.class_expression.OWLClass, int]
- dp_to_prim_type: Dict[owlapy.owl_property.OWLDataProperty, Any]
- dp_splits: Dict[owlapy.owl_property.OWLDataProperty, List[owlapy.owl_literal.OWLLiteral]]
- get_population(container: Callable, pset: deap.gp.PrimitiveSetTyped, population_size: int = 0, pos: List[owlapy.owl_individual.OWLNamedIndividual] = None, dp_to_prim_type: Dict[owlapy.owl_property.OWLDataProperty, Any] = None, dp_splits: Dict[owlapy.owl_property.OWLDataProperty, List[owlapy.owl_literal.OWLLiteral]] = None, kb: AbstractKnowledgeBase = None) List[Tree][source]