ontolearn.ea_initialization

Initialization for evolutionary algorithms.

Attributes

Property

Object

Classes

RandomInitMethod

Create a collection of name/value pairs.

AbstractEAInitialization

Abstract base class for initialization methods for evolutionary algorithms.

EARandomInitialization

Rnndom initialization methods for evolutionary algorithms.

PropObjPair

EARandomWalkInitialization

Random walk initialization for description logic learning.

Module Contents

class ontolearn.ea_initialization.RandomInitMethod(*args, **kwds)[source]

Bases: enum.Enum

Create a collection of name/value pairs.

Example enumeration:

>>> class Color(Enum):
...     RED = 1
...     BLUE = 2
...     GREEN = 3

Access them by:

  • attribute access:

>>> Color.RED
<Color.RED: 1>
  • value lookup:

>>> Color(1)
<Color.RED: 1>
  • name lookup:

>>> Color['RED']
<Color.RED: 1>

Enumerations can be iterated over, and know how many members they have:

>>> len(Color)
3
>>> list(Color)
[<Color.RED: 1>, <Color.BLUE: 2>, <Color.GREEN: 3>]

Methods can be added to enumerations, and members can have their own attributes – see the documentation for details.

GROW: Final
FULL: Final
RAMPED_HALF_HALF: Final
class ontolearn.ea_initialization.AbstractEAInitialization[source]

Abstract base class for initialization methods for evolutionary algorithms.

__slots__ = ()
abstractmethod get_population(container: Callable, pset: deap.gp.PrimitiveSetTyped, population_size: int = 0) List[Tree][source]
abstractmethod get_expression(pset: deap.gp.PrimitiveSetTyped) Tree[source]
class ontolearn.ea_initialization.EARandomInitialization(min_height: int = 3, max_height: int = 6, method: RandomInitMethod = RandomInitMethod.RAMPED_HALF_HALF)[source]

Bases: AbstractEAInitialization

Rnndom initialization methods for evolutionary algorithms.

__slots__ = ('min_height', 'max_height', 'method')
min_height: int
max_height: int
method: RandomInitMethod
get_population(container: Callable, pset: deap.gp.PrimitiveSetTyped, population_size: int = 0) List[Tree][source]
get_expression(pset: deap.gp.PrimitiveSetTyped, type_: type = None) Tree[source]
ontolearn.ea_initialization.Property
ontolearn.ea_initialization.Object
class ontolearn.ea_initialization.PropObjPair[source]
property_: Property
object_: Object
class ontolearn.ea_initialization.EARandomWalkInitialization(max_t: int = 2, jump_pr: float = 0.5)[source]

Bases: AbstractEAInitialization

Random walk initialization for description logic learning.

__slots__ = ('max_t', 'jump_pr', 'type_counts', 'dp_to_prim_type', 'dp_splits', 'kb')
connection_pr: float = 0.5
max_t: int
jump_pr: float
type_counts: Dict[owlapy.class_expression.OWLClass, int]
dp_to_prim_type: Dict[owlapy.owl_property.OWLDataProperty, Any]
dp_splits: Dict[owlapy.owl_property.OWLDataProperty, List[owlapy.owl_literal.OWLLiteral]]
kb: AbstractKnowledgeBase
get_population(container: Callable, pset: deap.gp.PrimitiveSetTyped, population_size: int = 0, pos: List[owlapy.owl_individual.OWLNamedIndividual] = None, dp_to_prim_type: Dict[owlapy.owl_property.OWLDataProperty, Any] = None, dp_splits: Dict[owlapy.owl_property.OWLDataProperty, List[owlapy.owl_literal.OWLLiteral]] = None, kb: AbstractKnowledgeBase = None) List[Tree][source]
get_expression(pset: deap.gp.PrimitiveSetTyped, ind: owlapy.owl_individual.OWLNamedIndividual = None) Tree[source]