ontolearn.nero_architectures

Classes

MAB

Multi-head Attention Block.

SAB

Self-Attention Block.

ISAB

Induced Self-Attention Block.

PMA

Pooling by Multihead Attention.

SetTransformer

Set Transformer architecture.

DeepSet

DeepSet neural architecture for set-based learning.

SetTransformerNet

Set Transformer based architecture.

Module Contents

class ontolearn.nero_architectures.MAB(dim_Q, dim_K, dim_V, num_heads, ln=False)[source]

Bases: torch.nn.Module

Multi-head Attention Block.

dim_V
num_heads
fc_q
fc_k
fc_v
fc_o
forward(Q, K)[source]
class ontolearn.nero_architectures.SAB(dim_in, dim_out, num_heads, ln=False)[source]

Bases: torch.nn.Module

Self-Attention Block.

mab
forward(X)[source]
class ontolearn.nero_architectures.ISAB(dim_in, dim_out, num_heads, num_inds, ln=False)[source]

Bases: torch.nn.Module

Induced Self-Attention Block.

I
mab0
mab1
forward(X)[source]
class ontolearn.nero_architectures.PMA(dim, num_heads, num_seeds, ln=False)[source]

Bases: torch.nn.Module

Pooling by Multihead Attention.

S
mab
forward(X)[source]
class ontolearn.nero_architectures.SetTransformer(dim_input, num_outputs, dim_output, num_inds=32, dim_hidden=128, num_heads=4, ln=False)[source]

Bases: torch.nn.Module

Set Transformer architecture.

enc
dec
forward(X)[source]
class ontolearn.nero_architectures.DeepSet(num_instances: int, num_embedding_dim: int, num_outputs: int)[source]

Bases: torch.nn.Module

DeepSet neural architecture for set-based learning.

name = 'DeepSet'
num_instances
num_embedding_dim
num_outputs
embeddings
fc0
fc1
forward(xpos, xneg)[source]
positive_expression_embeddings(tensor_idx_individuals: torch.LongTensor)[source]
negative_expression_embeddings(tensor_idx_individuals: torch.LongTensor)[source]
class ontolearn.nero_architectures.SetTransformerNet(num_instances: int, num_embedding_dim: int, num_outputs: int)[source]

Bases: torch.nn.Module

Set Transformer based architecture.

name = 'ST'
num_instances
num_embedding_dim
num_outputs
embeddings
set_transformer_negative
set_transformer_positive
forward(xpos, xneg)[source]