dicee.trainer.torch_trainer_ddp =============================== .. py:module:: dicee.trainer.torch_trainer_ddp Classes ------- .. autoapisummary:: dicee.trainer.torch_trainer_ddp.TorchDDPTrainer dicee.trainer.torch_trainer_ddp.NodeTrainer Functions --------- .. autoapisummary:: dicee.trainer.torch_trainer_ddp.make_iterable_verbose Module Contents --------------- .. py:function:: make_iterable_verbose(iterable_object, verbose, desc='Default', position=None, leave=True) -> Iterable .. py:class:: TorchDDPTrainer(args, callbacks) Bases: :py:obj:`dicee.abstracts.AbstractTrainer` A Trainer based on torch.nn.parallel.DistributedDataParallel Arguments ---------- train_set_idx Indexed triples for the training. entity_idxs mapping. relation_idxs mapping. form ? store ? label_smoothing_rate Using hard targets (0,1) drives weights to infinity. An outlier produces enormous gradients. :rtype: torch.utils.data.Dataset .. py:method:: fit(*args, **kwargs) Train model .. py:class:: NodeTrainer(trainer, model: torch.nn.Module, train_dataset_loader: torch.utils.data.DataLoader, callbacks, num_epochs: int) .. py:attribute:: trainer .. py:attribute:: local_rank .. py:attribute:: global_rank .. py:attribute:: optimizer .. py:attribute:: train_dataset_loader .. py:attribute:: loss_func .. py:attribute:: callbacks .. py:attribute:: model .. py:attribute:: num_epochs .. py:attribute:: loss_history :value: [] .. py:attribute:: ctx .. py:attribute:: scaler .. py:method:: extract_input_outputs(z: list) .. py:method:: train() Training loop for DDP