dicee.trainer ============= .. py:module:: dicee.trainer Submodules ---------- .. toctree:: :maxdepth: 1 /autoapi/dicee/trainer/dice_trainer/index /autoapi/dicee/trainer/model_parallelism/index /autoapi/dicee/trainer/torch_trainer/index /autoapi/dicee/trainer/torch_trainer_ddp/index Classes ------- .. autoapisummary:: dicee.trainer.DICE_Trainer Package Contents ---------------- .. py:class:: DICE_Trainer(args, is_continual_training: bool, storage_path, evaluator=None) DICE_Trainer implement 1- Pytorch Lightning trainer (https://pytorch-lightning.readthedocs.io/en/stable/common/trainer.html) 2- Multi-GPU Trainer(https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html) 3- CPU Trainer Parameter --------- args is_continual_training:bool storage_path:str evaluator: Returns ------- report:dict .. py:attribute:: report .. py:attribute:: args .. py:attribute:: trainer :value: None .. py:attribute:: is_continual_training .. py:attribute:: storage_path .. py:attribute:: evaluator :value: None .. py:attribute:: form_of_labelling :value: None .. py:method:: continual_start(knowledge_graph) (1) Initialize training. (2) Load model (3) Load trainer (3) Fit model Parameter --------- :returns: * *model* * **form_of_labelling** (*str*) .. py:method:: initialize_trainer(callbacks: List) -> lightning.Trainer | dicee.trainer.model_parallelism.TensorParallel | dicee.trainer.torch_trainer.TorchTrainer | dicee.trainer.torch_trainer_ddp.TorchDDPTrainer Initialize Trainer from input arguments .. py:method:: initialize_or_load_model() .. py:method:: init_dataloader(dataset: torch.utils.data.Dataset) -> torch.utils.data.DataLoader .. py:method:: init_dataset() -> torch.utils.data.Dataset .. py:method:: start(knowledge_graph: Union[dicee.knowledge_graph.KG, numpy.memmap]) -> Tuple[dicee.models.base_model.BaseKGE, str] Start the training (1) Initialize Trainer (2) Initialize or load a pretrained KGE model in DDP setup, we need to load the memory map of already read/index KG. .. py:method:: k_fold_cross_validation(dataset) -> Tuple[dicee.models.base_model.BaseKGE, str] Perform K-fold Cross-Validation 1. Obtain K train and test splits. 2. For each split, 2.1 initialize trainer and model 2.2. Train model with configuration provided in args. 2.3. Compute the mean reciprocal rank (MRR) score of the model on the test respective split. 3. Report the mean and average MRR . :param self: :param dataset: :return: model