Source code for dicee.trainer.dice_trainer

"""DICE Trainer module for knowledge graph embedding training.

Provides the DICE_Trainer class which supports multiple training backends
including PyTorch Lightning, DDP, and custom CPU/GPU trainers.
"""
import copy
import os
from typing import List, Optional, Tuple, Union

import lightning as pl
import numpy as np
import pandas as pd
import polars
import torch

from dicee.callbacks import (
    AccumulateEpochLossCallback,
    Eval,
    KronE,
    LRScheduler,
    PeriodicEvalCallback,
    Perturb,
    PrintCallback,
)
from dicee.dataset_classes import construct_dataset
from dicee.knowledge_graph import KG
from dicee.models.base_model import BaseKGE
from dicee.static_funcs import select_model, timeit
from dicee.weight_averaging import ASWA, EMA, SWA, SWAG, TWA

from ..models.ensemble import EnsembleKGE
from .model_parallelism import TensorParallel
from .torch_trainer import TorchTrainer
from .torch_trainer_ddp import TorchDDPTrainer

[docs] def load_term_mapping(file_path: str) -> polars.DataFrame: """Load term-to-index mapping from CSV file. Args: file_path: Base path without extension. Returns: Polars DataFrame containing the mapping. """ return polars.read_csv(f"{file_path}.csv")
[docs] def initialize_trainer( args, callbacks: List ) -> Union[TorchTrainer, TensorParallel, TorchDDPTrainer, pl.Trainer]: """Initialize the appropriate trainer based on configuration. Args: args: Configuration arguments containing trainer type. callbacks: List of training callbacks. Returns: Initialized trainer instance. Raises: AssertionError: If trainer is None after initialization. """ trainer: Optional[Union[TorchTrainer, TensorParallel, TorchDDPTrainer, pl.Trainer]] = None if args.trainer == 'torchCPUTrainer': print('Initializing TorchTrainer CPU Trainer...', end='\t') trainer = TorchTrainer(args, callbacks=callbacks) elif args.trainer == 'TP': print('Initializing TensorParallel...', end='\t') trainer= TensorParallel(args, callbacks=callbacks) elif args.trainer == 'torchDDP': assert torch.cuda.is_available() print('Initializing TorchDDPTrainer GPU', end='\t') trainer = TorchDDPTrainer(args, callbacks=callbacks) elif args.trainer == 'PL': print('Initializing Pytorch-lightning Trainer', end='\t') kwargs = vars(args) # NOTE: PyTorch Lightning Trainer has many optional parameters # See: https://lightning.ai/docs/pytorch/stable/common/trainer.html trainer = pl.Trainer(accelerator=kwargs.get("accelerator", "auto"), strategy=kwargs.get("strategy", "auto"), num_nodes=kwargs.get("num_nodes", 1), precision=kwargs.get("precision", None), logger=kwargs.get("logger", None), callbacks=callbacks, fast_dev_run=kwargs.get("fast_dev_run", False), max_epochs=kwargs["num_epochs"], min_epochs=kwargs["num_epochs"], max_steps=kwargs.get("max_step", -1), min_steps=kwargs.get("min_steps", None), detect_anomaly=False, barebones=False) else: print('Initializing TorchTrainer CPU Trainer...', end='\t') trainer = TorchTrainer(args, callbacks=callbacks) assert trainer is not None return trainer
[docs] def get_callbacks(args) -> List: """Create list of callbacks based on configuration. Args: args: Configuration arguments. Returns: List of callback instances. """ callbacks = [ pl.pytorch.callbacks.ModelSummary(), PrintCallback(), AccumulateEpochLossCallback(path=args.full_storage_path) ] # Weight averaging callbacks (mutually exclusive) if args.swa: print(f"Starting Stochastic Weight Averaging (SWA) at Epoch: {args.swa_start_epoch}") callbacks.append(SWA( swa_start_epoch=args.swa_start_epoch, lr_init=args.lr, max_epochs=args.num_epochs, swa_c_epochs=args.swa_c_epochs )) elif args.swag: print(f"Starting Stochastic Weight Averaging-Gaussian (SWA-G) at Epoch: {args.swa_start_epoch}") callbacks.append(SWAG( swa_start_epoch=args.swa_start_epoch, lr_init=args.lr, max_epochs=args.num_epochs, swa_c_epochs=args.swa_c_epochs )) elif args.ema: print(f"Starting Exponential Moving Average (EMA) at Epoch: {args.swa_start_epoch}") callbacks.append(EMA( ema_start_epoch=args.swa_start_epoch, max_epochs=args.num_epochs, ema_c_epochs=args.swa_c_epochs )) elif args.twa: print(f"Starting Trainable Weight Averaging at Epoch: {args.swa_start_epoch}") callbacks.append(TWA( twa_start_epoch=args.swa_start_epoch, lr_init=args.lr, max_epochs=args.num_epochs, twa_c_epochs=args.swa_c_epochs )) elif args.adaptive_swa: callbacks.append(ASWA(num_epochs=args.num_epochs, path=args.full_storage_path)) elif args.adaptive_lr: callbacks.append(LRScheduler( adaptive_lr_config=args.adaptive_lr, total_epochs=args.num_epochs, experiment_dir=args.full_storage_path, eta_max=args.lr )) # Periodic evaluation callback if args.eval_every_n_epochs > 0 or args.eval_at_epochs is not None: callbacks.append(PeriodicEvalCallback( experiment_path=args.full_storage_path, max_epochs=args.num_epochs, eval_every_n_epoch=args.eval_every_n_epochs, eval_at_epochs=args.eval_at_epochs, save_model_every_n_epoch=args.save_every_n_epochs, n_epochs_eval_model=args.n_epochs_eval_model )) if isinstance(args.callbacks, list): return callbacks for k, v in args.callbacks.items(): if k == "Perturb": callbacks.append(Perturb(**v)) elif k == 'KronE': callbacks.append(KronE()) elif k == 'Eval': callbacks.append(Eval(path=args.full_storage_path, epoch_ratio=v.get('epoch_ratio'))) else: raise RuntimeError(f'Incorrect callback:{k}') return callbacks
[docs] class DICE_Trainer: """ DICE_Trainer implement 1- Pytorch Lightning trainer (https://pytorch-lightning.readthedocs.io/en/stable/common/trainer.html) 2- Multi-GPU Trainer(https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html) 3- CPU Trainer Parameter --------- args is_continual_training:bool storage_path:str evaluator: Returns ------- report:dict """ def __init__(self, args, is_continual_training:bool, storage_path, evaluator=None): self.report = dict() self.args = args self.trainer = None self.is_continual_training = is_continual_training self.storage_path = storage_path # Required for CV. self.evaluator = evaluator self.form_of_labelling = None print(f'# of CPUs:{os.cpu_count()} |' f' # of GPUs:{torch.cuda.device_count()} |' f' # of CPUs for dataloader:{self.args.num_core}') for i in range(torch.cuda.device_count()): print(torch.cuda.get_device_name(i))
[docs] def continual_start(self,knowledge_graph): """ (1) Initialize training. (2) Load model (3) Load trainer (3) Fit model Parameter --------- Returns ------- model: form_of_labelling: str """ self.trainer = self.initialize_trainer(callbacks=get_callbacks(self.args)) model, form_of_labelling = self.initialize_or_load_model() # TODO: Here we need to load memory pag self.trainer.evaluator = self.evaluator self.trainer.dataset = knowledge_graph self.trainer.form_of_labelling = form_of_labelling self.trainer.fit(model, train_dataloaders=self.init_dataloader(self.init_dataset())) return model, form_of_labelling
[docs] @timeit def initialize_trainer(self, callbacks: List) -> pl.Trainer | TensorParallel | TorchTrainer | TorchDDPTrainer: """ Initialize Trainer from input arguments """ return initialize_trainer(self.args, callbacks)
[docs] @timeit def initialize_or_load_model(self): print('Initializing Model...', end='\t') model, form_of_labelling = select_model(vars(self.args), self.is_continual_training, self.storage_path) self.report['form_of_labelling'] = form_of_labelling assert form_of_labelling in ['EntityPrediction', 'RelationPrediction'] return model, form_of_labelling
[docs] @timeit def init_dataloader(self, dataset: torch.utils.data.Dataset) -> torch.utils.data.DataLoader: print('Initializing Dataloader...', end='\t') # https://pytorch.org/docs/stable/data.html#multi-process-data-loading # https://github.com/pytorch/pytorch/issues/13246#issuecomment-905703662 return torch.utils.data.DataLoader(dataset=dataset, batch_size=self.args.batch_size, shuffle=True, collate_fn=dataset.collate_fn, num_workers=self.args.num_core, persistent_workers=False)
[docs] @timeit def init_dataset(self) -> torch.utils.data.Dataset: print('Initializing Dataset...', end='\t') if isinstance(self.trainer.dataset,KG): # Create a memory map of training dataset to reduce the memory usage path_memory_map=self.trainer.dataset.path_for_serialization + '/memory_map_train_set.npy' if not os.path.exists(path_memory_map): train_set_shape=self.trainer.dataset.train_set.shape train_set_dtype=self.trainer.dataset.train_set.dtype path_memory_map=self.trainer.dataset.path_for_serialization + '/memory_map_train_set.npy' memmap_kg = np.memmap(path_memory_map, dtype=train_set_dtype, mode='w+', shape=train_set_shape) memmap_kg[:] = self.trainer.dataset.train_set[:] memmap_kg[:].flush() del memmap_kg self.trainer.dataset.train_set = np.memmap(path_memory_map, mode='r', dtype=train_set_dtype, shape=train_set_shape) train_dataset = construct_dataset(train_set=self.trainer.dataset.train_set, valid_set=self.trainer.dataset.valid_set, test_set=self.trainer.dataset.test_set, train_target_indices=self.trainer.dataset.train_target_indices, target_dim=self.trainer.dataset.target_dim, ordered_bpe_entities=self.trainer.dataset.ordered_bpe_entities, entity_to_idx=self.trainer.dataset.entity_to_idx, relation_to_idx=self.trainer.dataset.relation_to_idx, form_of_labelling=self.trainer.form_of_labelling, scoring_technique=self.args.scoring_technique, neg_ratio=self.args.neg_ratio, label_smoothing_rate=self.args.label_smoothing_rate, byte_pair_encoding=self.args.byte_pair_encoding, block_size=self.args.block_size) else: assert isinstance(self.trainer.dataset, np.memmap), ("Train dataset must be an instance of memmap. " f"Currently, {type(np.memmap)}!") if self.args.continual_learning: path = self.args.continual_learning else: path = self.args.path_to_store_single_run train_dataset = construct_dataset(train_set=self.trainer.dataset, valid_set=None, test_set=None, train_target_indices=None, target_dim=None, ordered_bpe_entities=None, entity_to_idx=pd.read_csv(f"{path}/entity_to_idx.csv",index_col=0), relation_to_idx=pd.read_csv(f"{path}/relation_to_idx.csv",index_col=0), form_of_labelling=self.trainer.form_of_labelling, scoring_technique=self.args.scoring_technique, neg_ratio=self.args.neg_ratio, label_smoothing_rate=self.args.label_smoothing_rate, byte_pair_encoding=self.args.byte_pair_encoding, block_size=self.args.block_size) return train_dataset
[docs] def start(self, knowledge_graph: Union[KG,np.memmap]) -> Tuple[BaseKGE, str]: """ Start the training (1) Initialize Trainer (2) Initialize or load a pretrained KGE model in DDP setup, we need to load the memory map of already read/index KG. """ """ Train selected model via the selected training strategy """ print('------------------- Train -------------------') assert isinstance(knowledge_graph, np.memmap) or isinstance(knowledge_graph, KG), \ f"knowledge_graph must be an instance of KG or np.memmap. Currently {type(knowledge_graph)}" if self.args.num_folds_for_cv == 0: self.trainer: Union[TensorParallel, TorchTrainer, TorchDDPTrainer, pl.Trainer] self.trainer = self.initialize_trainer(callbacks=get_callbacks(self.args)) model, form_of_labelling = self.initialize_or_load_model() self.trainer.evaluator = self.evaluator self.trainer.dataset = knowledge_graph self.trainer.form_of_labelling = form_of_labelling # TODO: Later, maybe we should write a callback to save the models in disk if isinstance(self.trainer, TensorParallel): assert isinstance(model, EnsembleKGE), type(model) model = self.trainer.fit(model, train_dataloaders=self.init_dataloader(self.init_dataset())) assert isinstance(model,EnsembleKGE) else: self.trainer.fit(model, train_dataloaders=self.init_dataloader(self.init_dataset())) return model, form_of_labelling else: return self.k_fold_cross_validation(knowledge_graph)
[docs] def k_fold_cross_validation(self, dataset) -> Tuple[BaseKGE, str]: """ Perform K-fold Cross-Validation 1. Obtain K train and test splits. 2. For each split, 2.1 initialize trainer and model 2.2. Train model with configuration provided in args. 2.3. Compute the mean reciprocal rank (MRR) score of the model on the test respective split. 3. Report the mean and average MRR . :param self: :param dataset: :return: model """ print(f'{self.args.num_folds_for_cv}-fold cross-validation') # (1) Create Kfold data from sklearn.model_selection import KFold kf = KFold(n_splits=self.args.num_folds_for_cv, shuffle=True, random_state=1) model = None eval_folds = [] form_of_labelling = None # (2) Iterate over (1) for (ith, (train_index, test_index)) in enumerate(kf.split(dataset.train_set)): # (2.1) Create a new copy for the callbacks args = copy.copy(self.args) trainer = initialize_trainer(args, get_callbacks(args)) model, form_of_labelling = select_model(vars(args), self.is_continual_training, self.storage_path) print(f'{form_of_labelling} training starts: {model.name}') train_set_for_i_th_fold, test_set_for_i_th_fold = dataset.train_set[train_index], dataset.train_set[ test_index] trainer.fit(model, train_dataloaders=self.init_dataloader( construct_dataset(train_set=train_set_for_i_th_fold, entity_to_idx=dataset.entity_to_idx, relation_to_idx=dataset.relation_to_idx, form_of_labelling=form_of_labelling, scoring_technique=self.args.scoring_technique, neg_ratio=self.args.neg_ratio, label_smoothing_rate=self.args.label_smoothing_rate))) res = self.evaluator.eval_with_data(dataset=dataset, trained_model=model, triple_idx=test_set_for_i_th_fold, form_of_labelling=form_of_labelling) # res = self.evaluator.evaluate_lp_k_vs_all(model, test_set_for_i_th_fold, form_of_labelling=form_of_labelling) eval_folds.append([res['MRR'], res['H@1'], res['H@3'], res['H@10']]) eval_folds = pd.DataFrame(eval_folds, columns=['MRR', 'H@1', 'H@3', 'H@10']) self.evaluator.report = eval_folds.to_dict() print(eval_folds) print(eval_folds.describe()) # results = {'H@1': eval_folds['H@1'].mean(), 'H@3': eval_folds['H@3'].mean(), 'H@10': eval_folds['H@10'].mean(), # 'MRR': eval_folds['MRR'].mean()} # print(f'KFold Cross Validation Results: {results}') return model, form_of_labelling