Source code for dicee.static_funcs_training

import torch
from typing import Dict, Tuple, List
import numpy as np
from tqdm import tqdm

[docs] def evaluate_lp(model, triple_idx, num_entities, er_vocab: Dict[Tuple, List], re_vocab: Dict[Tuple, List], info='Eval Starts'): """ Evaluate model in a standard link prediction task for each triple the rank is computed by taking the mean of the filtered missing head entity rank and the filtered missing tail entity rank :param model: :param triple_idx: :param info: :return: """ model.eval() print(info) print(f'Num of triples {len(triple_idx)}') print('** Evaluation without batching') hits = dict() reciprocal_ranks = [] # Iterate over test triples all_entities = torch.arange(0, num_entities).long() all_entities = all_entities.reshape(len(all_entities), ) # Iterating one by one is not good when you are using batch norm for i in tqdm(range(0, len(triple_idx))): # (1) Get a triple (head entity, relation, tail entity data_point = triple_idx[i] h, r, t = data_point[0], data_point[1], data_point[2] # (2) Predict missing heads and tails x = torch.stack((torch.tensor(h).repeat(num_entities, ), torch.tensor(r).repeat(num_entities, ), all_entities), dim=1) predictions_tails = model.forward_triples(x) x = torch.stack((all_entities, torch.tensor(r).repeat(num_entities, ), torch.tensor(t).repeat(num_entities) ), dim=1) predictions_heads = model.forward_triples(x) del x # 3. Computed filtered ranks for missing tail entities. # 3.1. Compute filtered tail entity rankings filt_tails = er_vocab[(h, r)] # 3.2 Get the predicted target's score target_value = predictions_tails[t].item() # 3.3 Filter scores of all triples containing filtered tail entities predictions_tails[filt_tails] = -np.Inf # 3.4 Reset the target's score predictions_tails[t] = target_value # 3.5. Sort the score _, sort_idxs = torch.sort(predictions_tails, descending=True) sort_idxs = sort_idxs.detach() filt_tail_entity_rank = np.where(sort_idxs == t)[0][0] # 4. Computed filtered ranks for missing head entities. # 4.1. Retrieve head entities to be filtered filt_heads = re_vocab[(r, t)] # 4.2 Get the predicted target's score target_value = predictions_heads[h].item() # 4.3 Filter scores of all triples containing filtered head entities. predictions_heads[filt_heads] = -np.Inf predictions_heads[h] = target_value _, sort_idxs = torch.sort(predictions_heads, descending=True) sort_idxs = sort_idxs.detach() filt_head_entity_rank = np.where(sort_idxs == h)[0][0] # 4. Add 1 to ranks as numpy array first item has the index of 0. filt_head_entity_rank += 1 filt_tail_entity_rank += 1 rr = 1.0 / filt_head_entity_rank + (1.0 / filt_tail_entity_rank) # 5. Store reciprocal ranks. reciprocal_ranks.append(rr) # print(f'{i}.th triple: mean reciprical rank:{rr}') # 4. Compute Hit@N for hits_level in range(1, 11): res = 1 if filt_head_entity_rank <= hits_level else 0 res += 1 if filt_tail_entity_rank <= hits_level else 0 if res > 0: hits.setdefault(hits_level, []).append(res) mean_reciprocal_rank = sum(reciprocal_ranks) / (float(len(triple_idx) * 2)) if 1 in hits: hit_1 = sum(hits[1]) / (float(len(triple_idx) * 2)) else: hit_1 = 0 if 3 in hits: hit_3 = sum(hits[3]) / (float(len(triple_idx) * 2)) else: hit_3 = 0 if 10 in hits: hit_10 = sum(hits[10]) / (float(len(triple_idx) * 2)) else: hit_10 = 0 results = {'H@1': hit_1, 'H@3': hit_3, 'H@10': hit_10, 'MRR': mean_reciprocal_rank} print(results) return results
[docs] @torch.no_grad() def evaluate_bpe_lp(model, triple_idx: List[Tuple], all_bpe_shaped_entities, er_vocab: Dict[Tuple, List], re_vocab: Dict[Tuple, List], info='Eval Starts'): assert isinstance(triple_idx, list) assert isinstance(triple_idx[0], tuple) assert len(triple_idx[0]) == 3 model.eval() print(info) print(f'Num of triples {len(triple_idx)}') hits = dict() reciprocal_ranks = [] # Iterate over test triples num_entities = len(all_bpe_shaped_entities) bpe_entity_to_idx = dict() all_bpe_entities = [] for idx, (str_entity, bpe_entity, shaped_bpe_entity) in tqdm(enumerate(all_bpe_shaped_entities)): bpe_entity_to_idx[shaped_bpe_entity] = idx all_bpe_entities.append(shaped_bpe_entity) all_bpe_entities = torch.LongTensor(all_bpe_entities) for (bpe_h, bpe_r, bpe_t) in tqdm(triple_idx): # (1) Indices of head and tail entities in all entities idx_bpe_h= bpe_entity_to_idx[bpe_h] idx_bpe_t= bpe_entity_to_idx[bpe_t] # (2) Tensor representation of sequence of sub-word representation of entities and relations torch_bpe_h = torch.LongTensor(bpe_h).unsqueeze(0) torch_bpe_r = torch.LongTensor(bpe_r).unsqueeze(0) torch_bpe_t = torch.LongTensor(bpe_t).unsqueeze(0) # (3) Missing head and tail predictions x = torch.stack((torch.repeat_interleave(input=torch_bpe_h, repeats=num_entities, dim=0), torch.repeat_interleave(input=torch_bpe_r, repeats=num_entities, dim=0), all_bpe_entities), dim=1) predictions_tails = model(x) x = torch.stack((all_bpe_entities, torch.repeat_interleave(input=torch_bpe_r, repeats=num_entities, dim=0), torch.repeat_interleave(input=torch_bpe_t, repeats=num_entities, dim=0)), dim=1) predictions_heads = model(x) # 3. Computed filtered ranks for missing tail entities. # 3.1. Compute filtered tail entity rankings filt_tails = [bpe_entity_to_idx[i] for i in er_vocab[(bpe_h, bpe_r)]] # 3.2 Get the predicted target's score target_value = predictions_tails[idx_bpe_t].item() # 3.3 Filter scores of all triples containing filtered tail entities predictions_tails[filt_tails] = -np.Inf # 3.4 Reset the target's score predictions_tails[idx_bpe_t] = target_value # 3.5. Sort the score _, sort_idxs = torch.sort(predictions_tails, descending=True) sort_idxs = sort_idxs.detach() filt_tail_entity_rank = np.where(sort_idxs == idx_bpe_t)[0][0] # 4. Computed filtered ranks for missing head entities. # 4.1. Retrieve head entities to be filtered filt_heads = [bpe_entity_to_idx[i] for i in re_vocab[(bpe_r, bpe_t)]] # 4.2 Get the predicted target's score target_value = predictions_heads[idx_bpe_h].item() # 4.3 Filter scores of all triples containing filtered head entities. predictions_heads[filt_heads] = -np.Inf predictions_heads[idx_bpe_h] = target_value _, sort_idxs = torch.sort(predictions_heads, descending=True) sort_idxs = sort_idxs.detach() filt_head_entity_rank = np.where(sort_idxs == idx_bpe_h)[0][0] # 4. Add 1 to ranks as numpy array first item has the index of 0. filt_head_entity_rank += 1 filt_tail_entity_rank += 1 rr = 1.0 / filt_head_entity_rank + (1.0 / filt_tail_entity_rank) # 5. Store reciprocal ranks. reciprocal_ranks.append(rr) # print(f'{i}.th triple: mean reciprical rank:{rr}') # 4. Compute Hit@N for hits_level in range(1, 11): res = 1 if filt_head_entity_rank <= hits_level else 0 res += 1 if filt_tail_entity_rank <= hits_level else 0 if res > 0: hits.setdefault(hits_level, []).append(res) mean_reciprocal_rank = sum(reciprocal_ranks) / (float(len(triple_idx) * 2)) if 1 in hits: hit_1 = sum(hits[1]) / (float(len(triple_idx) * 2)) else: hit_1 = 0 if 3 in hits: hit_3 = sum(hits[3]) / (float(len(triple_idx) * 2)) else: hit_3 = 0 if 10 in hits: hit_10 = sum(hits[10]) / (float(len(triple_idx) * 2)) else: hit_10 = 0 results = {'H@1': hit_1, 'H@3': hit_3, 'H@10': hit_10, 'MRR': mean_reciprocal_rank} print(results) return results
[docs] def efficient_zero_grad(model): # Use this instead of # self.optimizer.zero_grad() # # https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html#use-parameter-grad-none-instead-of-model-zero-grad-or-optimizer-zero-grad for param in model.parameters(): param.grad = None