Source code for dicee.executer

import json
import logging
import time
import warnings
from types import SimpleNamespace
import os
import datetime
from pytorch_lightning import seed_everything
from .knowledge_graph import KG
from .evaluator import Evaluator
from .static_preprocess_funcs import preprocesses_input_args
from .trainer import DICE_Trainer
from .static_funcs import timeit, read_or_load_kg, load_json, store, create_experiment_folder
import numpy as np

logging.getLogger('pytorch_lightning').setLevel(0)
warnings.filterwarnings(action="ignore", category=DeprecationWarning)
os.environ["TORCH_DISTRIBUTED_DEBUG"] = "INFO"

[docs] class Execute: """ A class for Training, Retraining and Evaluation a model. (1) Loading & Preprocessing & Serializing input data. (2) Training & Validation & Testing (3) Storing all necessary info """ def __init__(self, args, continuous_training=False): # (1) Process arguments and sanity checking. self.args = preprocesses_input_args(args) # (2) Ensure reproducibility. seed_everything(args.random_seed, workers=True) # (3) Set the continual training flag self.is_continual_training = continuous_training # (4) Create an experiment folder or use the previous one self.setup_executor() # (5) A variable is initialized for pytorch lightning trainer or DICE_Trainer() self.trainer = None self.trained_model = None # (6) A variable is initialized for storing input data. self.knowledge_graph = None # (7) Store few data in memory for numerical results, e.g. runtime, H@1 etc. self.report = dict() # (8) Create an object to carry out link prediction evaluations, e.g. Evaluator(self) self.evaluator = None # (9) Execution start time self.start_time = None
[docs] def setup_executor(self) -> None: if self.is_continual_training is False: # Create a single directory containing KGE and all related data if self.args.path_to_store_single_run is not None: if os.path.exists(self.args.path_to_store_single_run): print(f"Deleting the existing directory of {self.args.path_to_store_single_run}") os.system(f'rm -rf {self.args.path_to_store_single_run}') os.makedirs(self.args.path_to_store_single_run, exist_ok=False) self.args.full_storage_path = self.args.path_to_store_single_run else: self.args.full_storage_path = create_experiment_folder(folder_name=self.args.storage_path) with open(self.args.full_storage_path + '/configuration.json', 'w') as file_descriptor: temp = vars(self.args) json.dump(temp, file_descriptor, indent=3)
[docs] @timeit def save_trained_model(self) -> None: """ Save a knowledge graph embedding model (1) Send model to eval mode and cpu. (2) Store the memory footprint of the model. (3) Save the model into disk. (4) Update the stats of KG again ? Parameter ---------- Return ---------- None """ print('*** Save Trained Model ***') self.trained_model.eval() self.trained_model.to('cpu') # Save the epoch loss # (2) Store NumParam and EstimatedSizeMB self.report.update(self.trained_model.mem_of_model()) # (3) Store/Serialize Model for further use. if self.is_continual_training is False: store(trained_model=self.trained_model, model_name='model', full_storage_path=self.args.full_storage_path, save_embeddings_as_csv=self.args.save_embeddings_as_csv) else: store(trained_model=self.trained_model, model_name='model', # + str(datetime.datetime.now()), full_storage_path=self.args.full_storage_path, save_embeddings_as_csv=self.args.save_embeddings_as_csv) self.report['path_experiment_folder'] = self.args.full_storage_path self.report['num_entities'] = self.args.num_entities self.report['num_relations'] = self.args.num_relations
[docs] def end(self, form_of_labelling: str) -> dict: """ End training (1) Store trained model. (2) Report runtimes. (3) Eval model if required. Parameter --------- Returns ------- A dict containing information about the training and/or evaluation """ # (1) Save the model self.save_trained_model() # (2) Report self.write_report() # (3) Eval model and return eval results. if self.args.eval_model is None: self.write_report() return {**self.report} else: self.evaluator.eval(dataset=self.knowledge_graph, trained_model=self.trained_model, form_of_labelling=form_of_labelling) self.write_report() return {**self.report, **self.evaluator.report}
[docs] def write_report(self) -> None: """ Report training related information in a report.json file """ # @TODO: Move to static funcs # Report total runtime. self.report['Runtime'] = time.time() - self.start_time print(f"Total Runtime: {self.report['Runtime']:.3f} seconds") with open(self.args.full_storage_path + '/report.json', 'w') as file_descriptor: json.dump(self.report, file_descriptor, indent=4)
[docs] def start(self) -> dict: """ Start training # (1) Loading the Data # (2) Create an evaluator object. # (3) Create a trainer object. # (4) Start the training Parameter --------- Returns ------- A dict containing information about the training and/or evaluation """ self.start_time = time.time() print(f"Start time:{datetime.datetime.now()}") # (1) Reload the memory-map of index knowledge graph stored as a numpy ndarray. if self.args.path_to_store_single_run and os.path.exists(self.args.path_to_store_single_run+"/memory_map_train_set.npy"): # (1.1) Read information about memory-map of KG. with open(self.args.path_to_store_single_run+'/memory_map_details.json', 'r') as file_descriptor: memory_map_details = json.load(file_descriptor) self.knowledge_graph = np.memmap(self.args.path_to_store_single_run + '/memory_map_train_set.npy', mode='r', dtype=memory_map_details["dtype"], shape=tuple(memory_map_details["shape"])) self.args.num_entities = memory_map_details["num_entities"] self.args.num_relations = memory_map_details["num_relations"] self.args.num_tokens = None self.args.max_length_subword_tokens = None self.args.ordered_bpe_entities = None else: self.knowledge_graph = read_or_load_kg(self.args, cls=KG) self.args.num_entities = self.knowledge_graph.num_entities self.args.num_relations = self.knowledge_graph.num_relations self.args.num_tokens = self.knowledge_graph.num_tokens self.args.max_length_subword_tokens = self.knowledge_graph.max_length_subword_tokens self.args.ordered_bpe_entities = self.knowledge_graph.ordered_bpe_entities self.report['num_train_triples'] = len(self.knowledge_graph.train_set) self.report['num_entities'] = self.knowledge_graph.num_entities self.report['num_relations'] = self.knowledge_graph.num_relations self.report['max_length_subword_tokens'] = self.knowledge_graph.max_length_subword_tokens if self.knowledge_graph.max_length_subword_tokens else None self.report['runtime_kg_loading'] = time.time() - self.start_time data={"shape":tuple(self.knowledge_graph.train_set.shape), "dtype":self.knowledge_graph.train_set.dtype.str, "num_entities":self.knowledge_graph.num_entities, "num_relations":self.knowledge_graph.num_relations} with open(self.args.full_storage_path + '/memory_map_details.json', 'w') as file_descriptor: json.dump(data, file_descriptor, indent=4) # (2) Create an evaluator object. self.evaluator = Evaluator(args=self.args) # (3) Create a trainer object. self.trainer = DICE_Trainer(args=self.args, is_continual_training=self.is_continual_training, storage_path=self.args.full_storage_path, evaluator=self.evaluator) # (4) Start the training self.trained_model, form_of_labelling = self.trainer.start(knowledge_graph=self.knowledge_graph) return self.end(form_of_labelling)
[docs] class ContinuousExecute(Execute): """ A subclass of Execute Class for retraining (1) Loading & Preprocessing & Serializing input data. (2) Training & Validation & Testing (3) Storing all necessary info During the continual learning we can only modify *** num_epochs *** parameter. Trained model stored in the same folder as the seed model for the training. Trained model is noted with the current time. """ def __init__(self, args): # (1) Current input configuration. assert os.path.exists(args.continual_learning), f"Path doesn't exist {args.continual_learning}" assert os.path.isfile(args.continual_learning + '/configuration.json') # (2) Load previous input configuration. previous_args = load_json(args.continual_learning + '/configuration.json') args=vars(args) # previous_args["num_epochs"]=args["num_epochs"] previous_args["continual_learning"]=args["continual_learning"] print("Updated configuration:",previous_args) try: report = load_json(args['continual_learning'] + '/report.json') previous_args['num_entities'] = report['num_entities'] previous_args['num_relations'] = report['num_relations'] except AssertionError: print("Couldn't find report.json.") previous_args = SimpleNamespace(**previous_args) print('ContinuousExecute starting...') print(previous_args) super().__init__(previous_args, continuous_training=True)
[docs] def continual_start(self) -> dict: """ Start Continual Training (1) Initialize training. (2) Start continual training. (3) Save trained model. Parameter --------- Returns ------- A dict containing information about the training and/or evaluation """ # (1) self.trainer = DICE_Trainer(args=self.args, is_continual_training=True, storage_path=self.args.continual_learning) # (2) assert os.path.exists(f"{self.args.continual_learning}/memory_map_train_set.npy") # (1) Reload the memory-map of index knowledge graph stored as a numpy ndarray. with open(f"{self.args.continual_learning}/memory_map_details.json", 'r') as file_descriptor: memory_map_details = json.load(file_descriptor) knowledge_graph = np.memmap(f"{self.args.continual_learning}/memory_map_train_set.npy", mode='r', dtype=memory_map_details["dtype"], shape=tuple(memory_map_details["shape"])) self.args.num_entities = memory_map_details["num_entities"] self.args.num_relations = memory_map_details["num_relations"] self.args.num_tokens = None self.args.max_length_subword_tokens = None self.args.ordered_bpe_entities = None self.trained_model, form_of_labelling = self.trainer.continual_start(knowledge_graph) # (5) Store trained model. self.save_trained_model() # (6) Eval model. if self.args.eval_model is None: return self.report else: self.evaluator = Evaluator(args=self.args, is_continual_training=True) self.evaluator.dummy_eval(self.trained_model, form_of_labelling) return {**self.report, **self.evaluator.report}