ontolearn.quality_funcs ======================= .. py:module:: ontolearn.quality_funcs Functions --------- .. autoapisummary:: ontolearn.quality_funcs.f1 ontolearn.quality_funcs.acc ontolearn.quality_funcs.evaluate_concept Module Contents --------------- .. py:function:: f1(*, individuals: Set, pos: Set, neg: Set) .. py:function:: acc(*, individuals: Set, pos: Set, neg: Set) .. py:function:: evaluate_concept(kb: ontolearn.abstracts.AbstractKnowledgeBase, concept: owlapy.class_expression.OWLClassExpression, quality_func: ontolearn.abstracts.AbstractScorer, encoded_learning_problem: ontolearn.abstracts.EncodedLearningProblem) -> ontolearn.search.EvaluatedConcept Evaluates a concept by using the encoded learning problem examples, in terms of Accuracy or F1-score. .. note:: This method is useful to tell the quality (e.q) of a generated concept by the concept learners, to get the set of individuals (e.inds) that are classified by this concept and the amount of them (e.ic). :param kb: The knowledge base where to evaluate the concept. :param concept: The concept to be evaluated. :param quality_func: Quality measurement in terms of Accuracy or F1-score. :param encoded_learning_problem: The encoded learning problem. :returns: The evaluated concept.