ontolearn.nces_utils ==================== .. py:module:: ontolearn.nces_utils .. autoapi-nested-parse:: NCES utils. Classes ------- .. autoapisummary:: ontolearn.nces_utils.SimpleSolution Functions --------- .. autoapisummary:: ontolearn.nces_utils.sample_examples ontolearn.nces_utils.try_get_embs ontolearn.nces_utils.generate_training_data Module Contents --------------- .. py:class:: SimpleSolution(vocab, atomic_concept_names) .. py:attribute:: name :value: 'SimpleSolution' .. py:attribute:: atomic_concept_names .. py:attribute:: tokenizer .. py:method:: predict(expression: str) .. py:function:: sample_examples(pos, neg, num_ex) .. py:function:: try_get_embs(pos, neg, embeddings, num_examples) Depending on the KGE model, some individuals do not get assigned to any embedding during training. This function filters out such individuals from the provided positive/negative examples. It also .. py:function:: generate_training_data(kb_path, kb, max_num_lps=1000, refinement_expressivity=0.2, refs_sample_size=50, beyond_alc=True, storage_path=None)