ontolearn.learning_problem_generator ==================================== .. py:module:: ontolearn.learning_problem_generator .. autoapi-nested-parse:: Learning problem generator. Attributes ---------- .. autoapisummary:: ontolearn.learning_problem_generator.SearchAlgos Classes ------- .. autoapisummary:: ontolearn.learning_problem_generator.LearningProblemGenerator Module Contents --------------- .. py:data:: SearchAlgos .. py:class:: LearningProblemGenerator(knowledge_base: ontolearn.knowledge_base.KnowledgeBase, refinement_operator=None, num_problems=10000, num_diff_runs=100, min_num_instances=None, max_num_instances=sys.maxsize, min_length=3, max_length=5, depth=3, search_algo='strict-dfs') Learning problem generator. .. py:attribute:: kb .. py:attribute:: rho :value: None .. py:attribute:: search_algo :value: 'strict-dfs' .. py:attribute:: min_num_instances :value: None .. py:attribute:: max_num_instances :value: 9223372036854775807 .. py:attribute:: min_length :value: 3 .. py:attribute:: max_length :value: 5 .. py:attribute:: valid_learning_problems :value: [] .. py:attribute:: depth :value: 3 .. py:attribute:: num_diff_runs :value: 100 .. py:attribute:: num_problems :value: 100 .. py:method:: export_concepts(concepts: List[ontolearn.search.Node], path: str) Serialise the given concepts to a file. :param concepts: Node objects. :type concepts: list :param path: Filename base (extension will be added automatically). :type path: str .. py:method:: concept_individuals_to_string_balanced_examples(concept: owlapy.class_expression.OWLClassExpression) -> Dict[str, Set] .. py:method:: get_balanced_n_samples_per_examples(*, n=5, min_num_problems=None, max_length=None, min_length=None, num_diff_runs=None, min_num_instances=None, search_algo='strict-dfs') -> Iterable[Tuple[ontolearn.search.RL_State, Set[owlapy.owl_individual.OWLNamedIndividual], Set[owlapy.owl_individual.OWLNamedIndividual]]] 1. We generate min_num_problems number of concepts. 2. For each concept, we generate n number of positive and negative examples. 3. Each example contains n samples. .. py:method:: balanced_n_sampled_lp(n: int, string_all_pos: set) .. py:method:: get_balanced_examples(*, min_num_problems=None, max_length=None, min_length=None, num_diff_runs=None, min_num_instances=None, search_algo='strict-dfs') -> list (1) Generate valid examples with input search algorithm. (2) Balance valid examples. :returns: A list of balanced tuples (s,p,n) where s denotes the string representation of a concept, p and n denote a set of URIs of individuals indicating positive and negative examples. .. py:method:: get_examples(*, num_problems=None, max_length=None, min_length=None, num_diff_runs=None, min_num_ind=None, search_algo=None) -> list (1) Get valid examples with input search algorithm. :returns: A list of tuples (s,p,n) where s denotes the string representation of a concept, p and n denote a set of URIs of individuals indicating positive and negative examples. .. py:method:: get_concepts(*, num_problems=None, max_length=None, min_length=None, max_num_instances=None, num_diff_runs=None, min_num_instances=None, search_algo=None) -> Generator Calls `generate_examples` .. py:method:: generate_examples(*, num_problems=None, max_length=None, min_length=None, num_diff_runs=None, max_num_instances=None, min_num_instances=None, search_algo=None) -> Generator Generate examples via search algorithm that are valid examples w.r.t. given constraints. :returns: Valid examples .. py:method:: apply_rho_on_rl_state(rl_state)