ontolearn.learners.nces ======================= .. py:module:: ontolearn.learners.nces .. autoapi-nested-parse:: NCES: Neural Class Expression Synthesis. Classes ------- .. autoapisummary:: ontolearn.learners.nces.NCES Module Contents --------------- .. py:class:: NCES(knowledge_base, nces2_or_roces=False, quality_func: Optional[ontolearn.abstracts.AbstractScorer] = None, num_predictions=5, learner_names=['SetTransformer', 'LSTM', 'GRU'], path_of_embeddings=None, path_temp_embeddings=None, path_of_trained_models=None, auto_train=True, proj_dim=128, rnn_n_layers=2, drop_prob=0.1, num_heads=4, num_seeds=1, m=32, ln=False, dicee_model='DeCaL', dicee_epochs=5, dicee_lr=0.01, dicee_emb_dim=128, learning_rate=0.0001, tmax=20, eta_min=1e-05, clip_value=5.0, batch_size=256, num_workers=4, max_length=48, load_pretrained=True, sorted_examples=False, verbose: int = 0, enforce_validity: Optional[bool] = None) Bases: :py:obj:`ontolearn.base_nces.BaseNCES` Neural Class Expression Synthesis. .. py:attribute:: name :value: 'NCES' .. py:attribute:: knowledge_base .. py:attribute:: learner_names :value: ['SetTransformer', 'LSTM', 'GRU'] .. py:attribute:: path_of_embeddings :value: None .. py:attribute:: path_temp_embeddings :value: None .. py:attribute:: path_of_trained_models :value: None .. py:attribute:: dicee_model :value: 'DeCaL' .. py:attribute:: dicee_emb_dim :value: 128 .. py:attribute:: dicee_epochs :value: 5 .. py:attribute:: dicee_lr :value: 0.01 .. py:attribute:: rnn_n_layers :value: 2 .. py:attribute:: sorted_examples :value: False .. py:attribute:: has_renamed_inds :value: False .. py:attribute:: enforce_validity :value: None .. py:method:: get_synthesizer(path=None) .. py:method:: refresh(path=None) .. py:method:: get_prediction(x_pos, x_neg) .. py:method:: fit_one(pos: Union[List[owlapy.owl_individual.OWLNamedIndividual], List[str]], neg: Union[List[owlapy.owl_individual.OWLNamedIndividual], List[str]]) .. py:method:: fit(learning_problem: ontolearn.learning_problem.PosNegLPStandard, **kwargs) .. py:method:: best_hypotheses(n=1, return_node: bool = False) -> Union[owlapy.class_expression.OWLClassExpression, Iterable[owlapy.class_expression.OWLClassExpression], ontolearn.abstracts.AbstractNode, Iterable[ontolearn.abstracts.AbstractNode], None] .. py:method:: convert_to_list_str_from_iterable(data) .. py:method:: fit_from_iterable(dataset: Union[List[Tuple[str, Set[owlapy.owl_individual.OWLNamedIndividual], Set[owlapy.owl_individual.OWLNamedIndividual]]], List[Tuple[str, Set[str], Set[str]]]], shuffle_examples=False, verbose=False, **kwargs) -> List - Dataset is a list of tuples where the first items are strings corresponding to target concepts. - This function returns predictions as owl class expressions, not nodes as in fit .. py:method:: train(data: Iterable[List[Tuple]] = None, epochs=50, batch_size=64, max_num_lps=1000, refinement_expressivity=0.2, refs_sample_size=50, learning_rate=0.0001, tmax=20, eta_min=1e-05, clip_value=5.0, num_workers=8, save_model=True, storage_path=None, optimizer='Adam', record_runtime=True, example_sizes=None, shuffle_examples=False)